Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World’s leading Event Organizer


31st World Nano Conference

Barcelona, Spain

Riny Yolandha Parapat

Technical University Berlin, Germany

Title: Nano Asphalt Production Using Micro emulation and Sonication Method: Yield Optimization Using Surface Response


Biography: Riny Yolandha Parapat


The largest natural asphalt deposit in the world is located in Buton Island (Indonesia) which is around 677 million tons. Efforts in utilizing the Asbuton rock to produce asphalt as the replacement of petroleum asphalt have been carried out by other researchers, but they only produced a conventional type of asphalt. Also in general, the method that were used is quite expensive. The conventional asphalt in road pavement is unable to withstand traffic loads and excessive temperatures, resulting in deformation. This research is about making nano asphalt from Asbuton rock with using a combination of microemulsion technique and sonication. The advantage of this technique is the effectiveness of the process in producing the nano asphalt, that is by extracting the asphalt from the pores of Asbuton rock simultaneously forming (in-situ) the nanoparticles. Experimental variables that are varied in this study are the temperature, oil fraction, type of solvent, particle size, and type of surfactant (HLB). To find the optimum Yield of nano asphalt, the involved variables are simulated and optimized by using Factorial Design, Pareto Diagram, and Response Surface methods. The comprehensive results from the simulation are presented in this report including the significant variables which were optimized to produce the optimum Yield of nano asphalt. The optimum Yield of nano asphalt theoretically generated from Response Surface ranged between 80 – 99.90 %. The results of validation with experiments using optimized variables show the similarity between the optimum Yields and the simulated Yields value. The produced nano asphalt were investigated by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Infrared Spectrophotometer (IR) and X-Ray Diffraction (XRD) to prove the quality of nano asphalt.