Call for Abstract

32nd World Nano Conference, will be organized around the theme “Scrutinizing the latest approaches in the sphere of Nanotechnology”

Nano 2021 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Nano 2021

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Nanomedicine can be characterized as clinical use of nanotechnology. Nanomedicine ranges from the clinical uses of nanomaterials and organic gadgets, Nano electronic gadgets and biosensors and conceivable future uses of sub-atomic nanotechnology. Nanomaterials can be functionalized to interface with natural atoms and structures as the size of nanomaterials is equivalent to most organic particles and structures. Nanomaterials can be helpful for both in vivo and in vitro biomedical examination and applications and combination of nanomaterials with science has prompted the improvement of cutting edge symptomatic gadgets, exercise based recuperation applications, explanatory devices, contrast operators and medication conveyance vehicles. Nanomedicine takes a stab at conveying important arrangement of exploration apparatuses and clinically valuable gadgets and its industry deals came to $19 billion out of 2017, with a normal of $3.8 billion interest in nanotechnology R&D consistently and increment of 52% every year worldwide financing for developing nanotechnology.

The association of nanoparticles in a thin film shape is routinely essential to render these utilitarian and operational. Two basic engineered techniques, one is high-temperature warm breaking down and second is liquid interface reaction, sensible for arranging motion pictures of various metal and metal oxide nanoparticles. Besides, the utilization of a high-essentialness ball handling and begin plasma sintering process for the game plan and planning of nanocomposite powders into mass magnets are also featured.

  • Track 2-1Engineering applications of materials
  • Track 2-2Characterization and Optical Properties of Silver Nanostructures
  • Track 2-3Nano Particles
  • Track 2-4Size Dependence of Properties
  • Track 2-5Nanomaterials manufacturing technologies
  • Track 2-6Microscopy and Spectroscopic Methods of Measurement at the Nanoscale
  • Track 2-7Applications of Nano materials and Devices
  • Track 2-8Energy Storage and Novel Generation
  • Track 2-9Regulation On Advanced Therapy Medicinal Products/ Tissue Engineering
  • Track 2-10Materiomics

Nanoscience and technology is the branch of science. It studies systems and manipulates matter on atomic, molecular and supramolecular scales. Nano means one billion of a unit of measure. Nanotechnology has a huge potential to provide technological solutions to many problems in science, energy, physics, environment al and medical fields.

  • Track 3-1Emerging Trends in Nanotechnology
  • Track 3-2Energy Conversion and Storage
  • Track 3-3Nanotechnology in Water Purification

Materials science is a discipline which deals with the discovery and design of new substances. Materials sciences have played a key role for the development of mankind. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials Science and Engeneering inspects how variations in the structure of a material impact its properties.

Various geophysical and social weights are changing a move from fossil energizes to renewable and managable vitality sources. To impact this progressions, we should make the materials that will bolster developing vitality advancements.

Nanomaterials are characterized as materials of which a solitary unit is measured 1 and 1000 nanometers yet is generally 1—100 nm. Nanoparticles are items with each of the three outside measurements at the nanoscale. Nanoparticles that are normally happening (e.g., volcanic powder, ash from woodland fires) or are the accidental side effects of ignition procedures (e.g., welding, diesel motors) are generally physically and synthetically heterogeneous and frequently termed ultrafine particles.

Nano Medicine is the application of tiny machines to the treatment and prevention of disease. Nano Medicine the application of technology to do everything from drug delivery to repairing of cells. Nano robots are advancements in Nano medicine. Functionalities of Nanomedicine can be added to nanomaterials by interfacing them with biological molecules or structures.

Nanotechnology refers to a broad range of tools, techniques and applications that simply involve particles on the approximate size scale of a few to hundreds of nanometers in diameter. Particles of this size have some unique physicochemical and surface properties that lend themselves to novel uses. Indeed, advocates of nanotechnology suggest that this area of research could contribute to solutions for some of the major problems we face on the global scale such as ensuring a supply of safe drinking water for a growing population, as well as addressing issues in medicine, energy, and agriculture.

Bionanotechnology is the term that refers to the juncture of nanotechnology and biology. This discipline aids to indicate the fusion of biological research with several fields of nanotechnology. Concepts that are improved through nanobiology are comprises with Nano scale, nanodevices , and nanoparticles phenomena that occurs within the discipline of nanotechnology.

Tissue engineering is the use of a grouping of cells, engineering and materials methods, and appropriate biochemical and physicochemical factors to increase or replace biological tissues. Tissue engineering includes the use of a scaffold for the creation of innovative viable tissue for a medical determination. While it was once characterized as a sub-field of biomaterials, having developed in scope and importance and it can be considered as a field in its own.

Graphene is an atomic-scale honeycomb lattice made of carbon atoms. Graphene is undoubtedly emerging as one of the most promising nanomaterials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices.

Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics and other fields of materials science and technology. Owing to the material's exceptional strength and stiffness, nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material. In addition, owing to their extraordinary thermal conductivity, mechanical, and electrical properties, carbon nanotubes find applications as additives to various structural materials. For instance, nanotubes form a tiny portion of the material(s) in some (primarily carbon fibre) baseball bats, golf clubs, car parts or Damascus steel.

Nano electronics holds few answers for how we might increase the capabilities of electronics devices when we reduce their weight and power consumption. Nano electronics and technology are widely used in all aspects of modern life. Life Safety, Healthcare, Transportation, Computing, Energy and Telecommunications are some of the major fields benefiting from the growth of Nano electronic applications.

Nanostructured Materials for Biomedical Applications serves as a unique source for the rapidly growing biomaterials community on topics at the interface of biomaterials and nanotechnology. The book covers an extensive range of topics related to the processing, characterization, modeling, and applications of nanostructured medical device materials and biological materials.

Nanotoxicology is the combinational study of the toxicity of nanomaterials.  Due to quantum size effects and large surface area to volume ratio, nanomaterials have distinct properties compared with their larger counterparts. Nanotoxicology is a branch of bionanoscience which includes the study and application of toxicity of nanomaterials. Nanomaterials, even when prepared of inert elements like gold, become highly active at nanometer dimensions. Nanotoxicological studies are planned to determine whether and to what level these properties may pose a risk to the environment and to human beings.  For example, Diesel nanoparticles have been studied to harm the cardiovascular system in a mouse model.

Nano photonics is where photonics merges with Nano science and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction.

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter. Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

Nanofluidics is the study of the behavior, manipulation, and control of fluids that are confined to structures of nanometer (typically 1–100 nm) characteristic dimensions (1 nm = 10−9 m). Fluids confined in these structures exhibit physical behaviors not observed in larger structures, such as those of micrometer dimensions and above, because the characteristic physical scaling lengths of the fluid, (e.g. Debye length, hydrodynamic radius) very closely coincide with the dimensions of the nanostructure itself.

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm), or structures having nano-scale repeat distances between the different phases that make up the material. In the broadest sense this definition can include porous media, colloids, gels and copolymers, but is more usually taken to mean the solid combination of a bulk matrix and nano-dimensional phases differing in properties due to dissimilarities in structure and chemistry. The mechanical, electrical, thermal, optical, electrochemical, catalytic properties of the nanocomposite will differ markedly from that of the component materials. Size limits for these effects have been proposed, <5 nm for catalytic activity, <20 nm for making a hard magnetic material soft, <50 nm for refractive index changes, and <100 nm for achieving super paramagnetism, mechanical strengthening or restricting matrix dislocation movement.

Nanotechnology is a powerful tool for combating cancer and is being put to use in other applications that may reduce pollution, energy consumption, greenhouse gas emissions, and help prevent diseases. NCI's Alliance for Nanotechnology in Cancer is working to ensure that nanotechnologies for cancer applications are developed responsibly.  As with any new technology, the safety of nanotechnology is continuously being tested. The small size, high reactivity, and unique tensile and magnetic properties of nanomaterials—the same properties that drive interest in their biomedical and industrial applications—have raised concerns about implications for the environment, health, and safety (EHS).

Development of Nanotechnology and creating of Nanomaterials opened new perspectives for a number of areas of industry. These materials explain enlarged strength, toughness, biocompatibility, and can ensure higher service properties, reliability and systems.

The fate of nanotechnology has been a subject of various legitimate and non-logical speculations, consolidating a couple of doomsday dreams in popular culture that foreseen self-reproducing nanoparticles taking an interest in tremendous strikes on mankind and nature. The further developed dreams of nanotechnology fuse on one hand the envisioned usage of nano-particles inside the body and the course framework (for decisive and accommodating purposes), and afterward again – potential improvement of new weapons of mass obliteration enabled by nanotechnology.