Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

K. Kaviyarasu


K. Kaviyarasu

University of South Africa, South Africa

Biography

Kaviyarasu obtained his Master of Science (M.Sc.) & Master of Philosophy (M.Phil.) degree in Physics from Loyola College (Autonomous), Chennai, affiliated to the University of Madras, India. He has carried out research on Semiconductor Metal Oxide Nanocrystals & Synthesis and characterization of Hybrid Nanomaterials for energy applications. During the course of his research work, he has published 33 papers in International/National Journals and presented 35 papers in National and International conferences. Currently his a Postdoctoral researcher at UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), South Africa. My research is directed primarily toward developing and applying modern material design for the understanding and prediction of Physico - Chemical processes ranging from the molecular to the nanoscale to full-size engineering applications, using a multidisplinary approach that Physics, Chemistry, and Materials science. Work is closely coupled with synthesis and characterization of Hybrid Nanomaterials at the Center for Nanoscience and Nanotechnology, where scientific focus is on using theory and multiscale simulations and modeling for providing interpretive and predictive frameworks for virtual design and understanding of novel nanoscale materials with specific and/or emergent properties. This vision is possible through a multi-pronged, holistic, and tight integration with Materials Research Division (MRD) distinctive capabilities in precision experimental synthesis and characterization alongside leadership class computing. Understanding how atomic scale structure, confinement, and quantum mechanical effects impact electronic processes within these nanostructures and across interfaces to enable the design and synthesis of materials with prescribed functional (physio-chemical) properties. Very thin sheets of a material can exhibit greatly enhanced properties such as increased electrical conductivity as compared with the bulk and are well suited for applications in new electronic devices. Our goal is to understand how to design and control the nanoscale organization of macromolecular nanomaterials and their nanocomposites in order to achieve improved structure, properties, and functionality. The iThemba Laboratory for Accelerator-Based Sciences (iThemba LABS) where he studies materials for energy applications. His research interests include bulk and nanoscaled materials for solidstate- physics, and multifunctional metal oxide nanomaterial.

Abstract

Abstract : Looking for quantum size effects in Zr-Pb-O2 one dimensional nanorods